Influence of the Magnetic Coupling Process on the Advection Dominated Accretion Flows around Black Holes

نویسندگان

  • Ren-Yi Ma
  • Feng Yuan
چکیده

A large-scale closed magnetic field can transfer angular momentum and energy between a black hole (BH) and its surrounding accretion flow. We investigate the effects of this magnetic coupling (MC) process on the dynamics of a hot accretion flow (e.g., an advection dominated accretion flow, hereafter ADAF). The energy and angular momentum fluxes transported by the magnetic field are derived by an equivalent circuit approach. For a rapidly rotating BH, it is found that the radial velocity and the electron temperature of the accretion flow decrease, whereas the ion temperature and the surface density increase. The significance of the MC effects depends on the value of the viscous parameter α. The effects are obvious for α = 0.3 but nearly ignorable for α = 0.1. For a BH with specific angular momentum, a∗ = 0.9, and α = 0.3, we find that for reasonable parameters the radiative efficiency of a hot accretion flow can be increased by ∼ 30%. Subject headings: accretion, accretion disks — magnetic fields — black hole physics

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simplified Solution for Advection Dominated Accretion Flows with Outflow

The existence of outflow in the advection dominated accretion flows has been confirmed by both numerical simulations and observations. The outow models for ADAF have been investigated by several groups with a simple self similar solution. But this solution is inaccurate at the inner regions and can not explain the emitted spectrum of the flow; so, it is necessary to obtain a global solution for...

متن کامل

اثر مقاومت مغناطیسی متغیر بر ساختار قرصهای برافزایشی با پهن رفت غالب مغناطیده دوقطبی

In this work, we carry out self –similar solutions of viscous-resistive accretion flows around a magnetized compact object. We consider an axi-symmetric, rotating, isothermal steady accretion flow, which contains a poloidal magnetic field of the central star. The dominant mechanism of energy dissipation is assumed to be the turbulence viscosity and magnetic diffusivity due to the magnetic field...

متن کامل

Calculation of the relativistic bulk tensor and shear tensor of relativistic accretion flows in the Kerr metric.

In this paper, we calculate the relativistic bulk tensor and shear tensor of the relativistic accretion ows in the Kerr metric, overall and without any approximation. We obtain the relations of all components of the relativistic bulk and shear tensor in terms of components of four-velocity and its derivatives, Christoffel symbols and metric components in the BLF. Then, these components are deri...

متن کامل

Advection-Dominated Accretion: Underfed Black Holes and Neutron Stars

We describe new optically thin solutions for rotating accretion flows around black holes and neutron stars. These solutions are advection-dominated, so that most of the viscously dissipated energy is advected radially with the flow. We model the accreting gas as a twotemperature plasma and include cooling by bremsstrahlung, synchrotron, and Comptonization. We obtain electron temperatures Te ∼ 1...

متن کامل

The Blandford-znajek Mechanism and Emission from Isolated Accreting Black Holes

In the presence of a magnetic field, rotational energy can be extracted from black holes via the Blandford-Znajek mechanism. We use self-similar advection dominated accretion (ADAF) models to estimate the efficiency of this mechanism for black holes accreting from geometrically thick disks, in the light of recent magnetohydrodynamic disk simulations, and show that the power from electromagnetic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008